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There are very few explicit solutions known for the
water-wave problems.

for pure gravity water waves: Gerstner’s solution([1];
[2]; [3],[4]) and the edge wave solution related to it [5].

Beneath Gerstner’s waves it is possible to have a
motion of the fluid where all particles describe circles
with a depth-dependent radius ([3], [4]).

[1] (1809) GERSTNER F., Ann. Phys.

[2] (1863) RANKINE W. J. M., Phil. Trans. R. Soc. A.

[3] (2001) CONSTANTIN A., J. Phys. A.

[4] (2008) HENRY D., J. Nonlinear Math. Phys.

[5] (2001) CONSTANTIN A., J. Phys. A.
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for pure capillary water waves: Crapper’s solution
[1] and its generalization in the case of finite depth [2].

In [4], by the use of Longuet-Higgins method [3], the
particle trajectories in Crapper’s waves are derived. It
is found that the orbits of the steeper waves are
neither circular nor closed.

[1] (1957) CRAPPER G. D., J. Fluid Mech.

[2] (1976) KINNERSLEY W., J. Fluid Mech.

[3] (1979) LONGUET-HIGGINS M. S., J. Fluid Mech.

[4] (1984) HOGAN S. J., J. Fluid Mech.
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for capillary-gravity water waves no exact analytic
solution has yet been found.

Making use of numerical studies, in [1] the particle
trajectories in irrotational nonlinear capillary-gravity
waves on ideal fluids of infinite depth are investigated.

[1] (1985) HOGAN S. J., J. Fluid Mech.
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In what follows, we investigate the capillary-gravity
waves and the internal motion of the fluid under the
passage of such waves within the framework of
small-amplitude waves theory.

We simplify the full system of equations by a
linearization which is around still water.

We define the set of non-dimensional variables:

x 7→ λx, z 7→ h0z, η 7→ aη, t 7→ λ√
gh0

t,

u 7→
√

gh0u, v 7→ h0

√
gh0

λ v

p 7→ p0 + ρgh0(1 − z) + ρgh0p
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In non-dimensional scaled variables, the boundary
value problem (1) becomes






































ut + ǫ(uux + vuz) = −px

δ2[vt + ǫ(uvx + vvz)] = −pz

ux + vz = 0

v = ηt + ǫuηx on z = 1 + ǫη(x, t)

p = η − δ2We
ηxx

(1+ǫ2δ2η2
x)3/2

on z = 1 + ǫη(x, t)

v = 0 on z = 0

(2)

ǫ = a
h0

is the amplitude parameter
δ = h0

λ is the shallowness parameter

We = Γ
gh2

0

is a Weber number
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We suppose that the water flow is irrotational, thus,
in addition to the system (2) we also have the eq.:

uz − vx = 0 (3)

which writes in non-dimensional variables as:

uz − δ2vx = 0 (4)

By letting ǫ → 0, δ and We being fixed, we obtain a linear

approximation of (2)+(4).
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The linearized problem:














































ut + px = 0

δ2vt + pz = 0

ux + vz = 0

uz − δ2vx = 0

v = ηt on z = 1

p = η − δ2Weηxx on z = 1

v = 0 on z = 0

(5)

Solving this problem, we get a parameter c0 by which

we can describe different background flows in the irro-

tational case.
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From the first four eqs. of (5) and applying the method of

separation of variables we get:

u(x, z, t) = δ
k sinh(kδ) cosh(kδz)ηtx + F(t)

v(x, z, t) = 1
sinh(kδ) sinh(kδz)ηt

ηtxx + k2ηt = 0

F(t) an arbitrary function, k ≥ 0 a constant that might depend on time.

For periodic travelling wave solutions, with k = 2π, we choose

η(x, t) = cos(2π(x − ct))

c is to be determined. From the first 2 eqs. of (5) and the boundary

conditions we find the expressions of the pressure p, of c and

F(t) = const = c0
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Thus, a periodic solution of the linear system (5) is:

η(x, t) = cos(2π(x − ct))

u(x, z, t) = 2πδc
sinh(2πδ) cosh(2πδz) cos(2π(x − ct))+c0

v(x, z, t) = 2πc
sinh(2πδ) sinh(2πδz) sin(2π(x − ct))

p(x, z, t) = 2πδc2

sinh(2πδ) cosh(2πδz) cos(2π(x − ct))

(6)

with the non-dimensional speed of the linear wave

c2 =
tanh(2πδ)

2πδ
(1 + 4π2δ2We) =

λ

2πh0

(

1 +
4π2Γ

gλ2

)

tanh

(

2πh0

λ

)

(7)
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Let (x(t), z(t)) be the path of a particle in the fluid
domain, (x(0), z(0)) := (x0, z0) at time t = 0.
The motion of the particles is described by:

{

dx
dt = u(x, z, t) = 2πδc

sinh(2πδ) cosh(2πδz) cos(2π(x − ct)) + c0

dz
dt = v(x, z, t) = 2πc

sinh(2πδ) sinh(2πδz) sin(2π(x − ct))

(8)
Notice that

c0 =
1

1

∫ x+1

x

u(s, z, t)ds, (9)

representing therefore the strength of the underlying
uniform current (see also [1]).

[1] (2010) CONSTANTIN A. AND STRAUSS W., Comm. Pure Appl.
Math.
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Thus,

c0 = 0 will correspond to a region of still water
with no underlying current

c0 > 0 will characterize a favorable uniform current

c0 < 0 will characterize an adverse uniform current
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Analyzing the first-order approximation of the
nonlinear ordinary differential equation system
which describes the particle motion below
small-amplitude waves, it was obtained that all
water particles trace closed, circular or elliptic, orbits
(see, for example, [1], [2], [3], [4]).

[1] (1953) LAMB H., Hydrodynamics.

[2] (1994) DEBNATH L., Nonlinear Water Waves.

[3] (1997) JOHNSON R. S., A Modern Introduction to the
Mathematical Theory of Water Waves.

[4] (2001) LIGHTHILL J., Waves in Fluids.

Delia Ionescu-Kruse Small-amplitude capillary-gravity water waves: Exact solutions and particle motion beneath such waves – p.14/27



The classical picture:
A = In deep water.
The orbital motion of fluid particles
decreases rapidly with increasing
depth below the surface.

B = In shallow water.
The elliptical movement of a fluid
particle flattens with decreasing
depth.

1 = Propagation direction.

2 = Wave crest.

3 = Wave trough.

*The picture is taken from Wikipedia, Wave-Wikipedia, the free encyclopedia.
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In the moving frame

X = 2π(x − ct), Z = 2πδz (10)

the system (8) becomes
{

dX
dt = 4π2δc

sinh(2πδ) cosh(Z) cos(X) + 2π(c0 − c)
dZ
dt = 4π2δc

sinh(2πδ) sinh(Z) sin(X)
(11)

I) c0 = c

In this case, differentiating (11) with respect to t we get
{

d2X
dt2 = −A2 sin(2X)
d2Z
dt2 = A2 sinh(2Z)

(12)

where A2 := 8π4δ2c2

sinh2(2πδ)
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The system (12) integrates to:
{

(

dX
dt

)2
= A2 cos(2X) + c1

(

dZ
dt

)2
= A2 cosh(2Z) + c2

(13)

c1, c2 being the integration constants. For the first eq.
in (13) we use the substitution

tan(X) = y , cos(2X) =
1 − y2

1 + y2
, dX =

1

1 + y2
dy (14)

for the second eq. in (13), we use the substitution

tanh(Z) = w , cosh(2Z) =
1 + w2

1 − w2
, dZ =

1

1 − w2
dw (15)
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In the new variables, we obtain:






(

dy
dt

)2
= A2(1 − y4) + c1(1 + y2)2

(

dw
dt

)2
= A2(1 − w4) + c2(1 − w2)2

(16)

The solutions involve elliptic integrals of the first kind:

±
∫

dy
√

(c1 − A2)y4 + 2c1y2 + c1 + A2
= t (17)

±
∫

dw
√

(c2 − A2)w4 − 2c2w2 + c2 + A2
= t (18)

which may by reduced to their Legendre normal form.
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Depending of the sign of c1 − A2, c1 + A2, we get:

y(t) = ±
sn

(

√

c1 + A2 t; k1

)

cn
(

√

c1 + A2 t; k1

) , 0 ≤ k2
1 :=

2A2

c1 + A2
≤ 1

(19)

y(t) = ±
√

A2 + c1

A2 − c1
cn

(√
2A2 t; k2

)

, 0 ≤ k2
2 :=

A2 + c1

2A2
≤ 1

(20)
sn is the Jacobian elliptic function sine amplitude

cn is the Jacobian elliptic function cosine amplitude
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They arise from the inversion of the elliptic integral of
the first kind

t =

∫

dϕ
√

1 − k2 sin2 ϕ
(21)

0 ≤ k2 ≤ 1 is the elliptic modulus and ϕ is the Jacobi
amplitude

sn (t; k) := sin(ϕ), cn (t; k) := cos(ϕ) (22)

-10 -5 5 10

-1.0

-0.5

0.5

1.0

The graphs of sn(t;1/3) and cn(t;1/3).

sn 2(t; k)+ cn 2(t; k) = 1

−1 ≤ sn (t; k) ≤ 1, −1 ≤ cn (t; k) ≤ 1

sn (t; 0) = sin(t), cn (t; 0) = cos(t)

sn (t; 1) = tanh(t), cn (t; 1) = sech (t)
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Depending of the sign of c2 − A2, c2 + A2, we get:

w(t) = ± sn
(

√

c2 + A2 t; k3

)

, 0 ≤ k2
3 =

c2 − A2

c2 + A2
≤ 1 (23)

w(t) = ± cn
(√

2A2 t; k4

)

, 0 ≤ k2
4 =

A2 − c2

2A2
≤ 1 (24)

w(t) = ±
√

1 − 2A2

A2 − c2
sn 2

(

√

A2 − c2 t; k5

)

, 0 ≤ k2
5 =

2A2

A2 − c2
≤ 1

(25)
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Thus, the solution of system (8) has the expression:
{

x(t) = ct + 1
2π arctan [y(t)]

z(t) = 1
2πδ arctanh [w(t)]

(26)

with y(t) given by (20), (21) and w(t) by (24), (25),
(26)(see [1], [2]).

The curves in (26) are not closed curves.

[1] (2009) IONESCU-KRUSE D., Wave Motion.

[2] (2010) IONESCU-KRUSE D.,Nonlinear Anal. Real World

Appl.
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This result is in the line with the results obtained in
[1]-[11].

[1] (2008) CONSTANTIN A. AND VILLARI G., J. Math. Fluid Mech.

[2] (2006) CONSTANTIN A., Invent. Math.

[3] (2006) HENRY D., Int. Math. Res. Not.

[4] (2007) CONSTANTIN A. AND ESCHER J., Bull. Amer. Math. Soc.

[5] (2007) HENRY D., J. Nonlinear Math. Phys. .

[6] (2007) HENRY D., Phil. Trans. R. Soc. A

[7] (2008) CONSTANTIN A., EHRNSTRÖM M., AND VILLARI G., Nonlinear Anal. Real
World Appl.

[8] (2008) EHRNSTRÖM M. , Nonlinearity.

[9] (2008) EHRNSTRÖM M. AND VILLARI G., J. Differential Equations.

[10] (2008) IONESCU-KRUSE D., J. Nonlinear Math. Phys.

[11] (2009) IONESCU-KRUSE, Nonlinear Anal-Theor.
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Analyzing in more detail the explicit solution (26) we get ([2],[3])
new kind of particle paths (see also [1]):

x′(t) > 0 x′(t) < 0 x′(t) < 0 x′(t) > 0

z′(t) > 0 z′(t) > 0 z′(t) < 0 z′(t) < 0

x′(t) > 0 x′(t) > 0

z′(t) < 0 z′(t) > 0

x′(t) < 0 x′(t) < 0

z′(t) < 0 z′(t) > 0

lim
t→t̃

x(t) = finite := x̃, lim
t→t̃

z(t) = ∞

[1] (2010) CONSTANTIN A. AND STRAUSS W., Comm. Pure Appl. Math.

[2] (2009) IONESCU-KRUSE D., Wave Motion.

[3] (2010) IONESCU-KRUSE D.,Nonlinear Anal. Real World Appl.
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II) c0 6= c

Differentiating system (11) with respect to t, we get:

d2X

dt2
+ b tan(X)

dX

dt
+ A2 sin(2X) − b2 tan(X) = 0 (27)

where b := 2π(c0 − c). By the substitution tan(X) = y, we get

d2y

dt2
− 2y

1 + y2

(

dy

dt

)2

+ by
dy

dt
+ 2A2y − b2y(1 + y2) = 0

(28)
This eq. can be written as an Abel differential equation of
the second kind. It is solvable and its solution has the

parametric form (see [1]):

[1] (2009) IONESCU-KRUSE D., Wave Motion.
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y(τ) = ±
√

√

√

√

τ2 − 2A2

(

C − b ln |τ +
√

τ2 − 2A2|
)2 − 1, (29)

C is a constant, and the relation between t and τ is:

t =

∫

1
√

τ2 − 2A2

√

τ2 − 2A2 − (C − b ln |τ +
√

τ2 − 2A2|)2
dτ

(30)
The solution of system (8) is written now as














x(τ) = c t(τ) ± 1
2π arctan

[

√

τ2−2A2

(C−b ln |τ+
√

τ2−2A2|)2 − 1

]

z(τ) = ± 1
πδ arctanh

[
√

τ−
√

2A

τ+
√

2A

]
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Conclusions

We provide explicit solutions to the nonlinear ODEs
which give the particle paths below small-amplitude
waves.

In the case c0 = c, the solution of the system is
represented by Jacobian elliptic functions.

In the case c0 6= c the system is governed by a
solvable Abel differential equation of second kind.

We give an accurate description of the shapes of
the particle paths within the fluid.
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